RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

SECOND YEAR B.A./B.SC. FOURTH SEMESTER (January – June) 2013 Mid-Semester Examination, March 2013

: 04/03/2013 Date

CHEMISTRY (Honours) Paper : IV

Time : 2 pm – 4 pm

Full Marks : 50

[4×2]

[Use Separate Answer Books for each group]

<u>Group – A</u>

(Answer <u>any one</u> question)

1.	a)	The average covalent bond energies of N–N, P–P and As–As are 160, 209 and 180 KJ mol ⁻ Explain	$[2^{1}/2]$	
	b)	Nitrogen is diatomic but phosphorous is tetratomic. Explain it chemically and thermodynamically The bond dissociation energy of $N \equiv N$ and $P \equiv P$ are 946 and 490 KJ mol ⁻¹ and the P – P, N – P	y. N	
		are 209 and 160 KJ mol ^{-1} .	[21/2]	
	c)	Substitution reaction in four coordinate silicon compounds occurs with inversion or retention of configuration. Justify	of [2]	
	d)	Fluoro carbons usually possess lower melting point than corresponding hydrocarbons. Explain	[2]	
	e)	SiF ₄ is incompletely hydrolysed. Explain	[2]	
	f)	Explain with example the symmetrical and unsymmetrical cleavage of B_2H_6 .	[2]	
	g)	Why borazol is referred as inorganic benzene.	[2]	
	h)	Boronnitride is sometimes called inorganic graphite. Explain.	[3]	
2.	a)	Comment on the dipolemoment of R ₃ PO and R ₃ NO	[2]	
	b)	Discuss briefly the donor properties of the hydrides of group VA with special emphasis on NH ₃ and		
		PH ₃ .	[3]	
	c)	Diamond is thermodynamically less stable than graphite; yet conversion rate is negligible. Justify	[2]	
	d)	Explain the bonding of SnCl ₂ .2H ₂ O	[2]	
	e)	$E_{C-H} = 435 \text{ KJ mol}^{-1}$; $E_{C-F} = 515 \text{ KJ mol}^{-1}$; but $r_{C-H} < r_{C-F}$ Justify.	[2]	
	f)	Give a brief introduction of gr. 13 element with respect to their—(i) oxidation state, (ii) Hydride [[2+2]	
	g)) Reduction of boron halides might be expected to produce borane, BH ₃ . However, it is impossible t		
		isolate the monomer, all synthesis resulting in diborane, B ₂ H ₆ . Explain.	[2]	
	h)	What happens when diborane is dissolved in strong alkali?	[1]	

<u>Group – B</u> (Answer <u>any one</u> question)

a) Give mechanism for each of the following reactions : 3.

iv) (R) – PhCHMeCONH₂
$$\xrightarrow{\text{Br}_2}$$
 NaOH

b) Give retrosynthetic analysis and efficient synthesis of the following compounds

4. a) Give mechanism for each of the following reactions :

b) Give product(s) of the following reactions with mechanisms.

c) Carry out the following conversions. Mechanism is not necessary.

(2)

[3×2]

[2]

[4×2]

[3×2]

Predict (A) and (B) in the following reaction sequence. d)

Ph Br $\xrightarrow{\text{NaBH}_4}(A) \xrightarrow{(B)}$

<u>Group – C</u> (Attempt all questions)

- Define specific and equivalent conductances of a solution. State, with reasons, how equivalent 5. a) conductance of a strong electrolyte changes with dilution. [1+1+2]
 - Equivalent conductances at infinite dilution of HCl, NaCl and CH₃CO₂Na are 426.2, 126.5 and 91 b) ohm⁻¹ cm² equiv⁻¹ respectively at 25°C. A conductance cell filled with 0.01N KCl has a resistance of 257.3 ohm at 25°C. The same cell filled with 0.2 N acetic acid has a resistance of 508.6 ohm. Calculate the dissociation constant of the acid. (Specific conductance of 0.01 N KCl = 1.41×10^{-3} $ohm^{-1}cm^{-1})$ [4]

Or

- State Kohlrausch's law of independent migration of ions. 6. a)
 - b) Discuss how the solubility and the solubility product of CaF_2 can be determined experimentally from conductance measurements.
 - Conductance of a 0.1N HCl solution is found to be B units, using a cell having cell constant 1.0c) cm⁻¹. Equal volume of 0.1 N NaOH solution is added to it and the new conductance is found to be A units. What is the sign of the quantity (A - B)? Find out the equivalent conductance of the resulting solution. [3]

- b) Mention (with the help of a quantitative relation) how the kinetic energy of an emitted photoelectron depends upon frequency of the incident radiation. Explain this on the light of Einstein's theory of quantized radiation. [1+3]
- Mention how the rate of emission of photoelectrons depends upon intensity of the incident c) radiation. Explain this on the light of Einstein's theory of quantized radiation. [1+2]

Or

- Write down the Schrodinger Equation for a system with a potential energy V(x), able to move in 8. a) only one dimension. [1]
 - i) Solve the Schrodinger equation for a 'free particle'. b)
 - ii) Explain why none of the particular solutions can be accepted as well-behaved 'wave function'. What is the way out then? [3+1]

約樂の

[2]

[3]

[1]

[3]

[2]